Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS One ; 18(1): e0277657, 2023.
Article in English | MEDLINE | ID: covidwho-2214773

ABSTRACT

BACKGROUND: Accurate and timely diagnosis is essential in limiting the spread of SARS-CoV-2 infection. The reference standard, rRT-PCR, requires specialized laboratories, costly reagents, and a long turnaround time. Antigen RDTs provide a feasible alternative to rRT-PCR since they are quick, relatively inexpensive, and do not require a laboratory. The WHO requires that Ag RDTs have a sensitivity ≥80% and specificity ≥97%. METHODS: This evaluation was conducted at 11 health facilities in Kenya between March and July 2021. We enrolled persons of any age with respiratory symptoms and asymptomatic contacts of confirmed COVID-19 cases. We collected demographic and clinical information and two nasopharyngeal specimens from each participant for Ag RDT testing and rRT-PCR. We calculated the diagnostic performance of the Panbio™ Ag RDT against the US Centers for Disease Control and Prevention's (CDC) rRT-PCR test. RESULTS: We evaluated the Ag RDT in 2,245 individuals where 551 (24.5%, 95% CI: 22.8-26.3%) tested positive by rRT-PCR. Overall sensitivity of the Ag RDT was 46.6% (95% CI: 42.4-50.9%), specificity 98.5% (95% CI: 97.8-99.0%), PPV 90.8% (95% CI: 86.8-93.9%) and NPV 85.0% (95% CI: 83.4-86.6%). Among symptomatic individuals, sensitivity was 60.6% (95% CI: 54.3-66.7%) and specificity was 98.1% (95% CI: 96.7-99.0%). Among asymptomatic individuals, sensitivity was 34.7% (95% CI 29.3-40.4%) and specificity was 98.7% (95% CI: 97.8-99.3%). In persons with onset of symptoms <5 days (594/876, 67.8%), sensitivity was 67.1% (95% CI: 59.2-74.3%), and 53.3% (95% CI: 40.0-66.3%) among those with onset of symptoms >7 days (157/876, 17.9%). The highest sensitivity was 87.0% (95% CI: 80.9-91.8%) in symptomatic individuals with cycle threshold (Ct) values ≤30. CONCLUSION: The overall sensitivity and NPV of the Panbio™ Ag RDT were much lower than expected. The specificity of the Ag RDT was high and satisfactory; therefore, a positive result may not require confirmation by rRT-PCR. The kit may be useful as a rapid screening tool only for symptomatic patients in high-risk settings with limited access to rRT-PCR. A negative result should be interpreted based on clinical and epidemiological information and may require retesting by rRT-PCR.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antigens, Viral , COVID-19/diagnosis , COVID-19 Testing , Health Facilities , Kenya/epidemiology , Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
2.
J Glob Health ; 12: 15001, 2022 Dec 30.
Article in English | MEDLINE | ID: covidwho-2203067

ABSTRACT

Background: Kenya detected the first case of COVID-19 on March 13, 2020, and as of July 30, 2020, 17 975 cases with 285 deaths (case fatality rate (CFR) = 1.6%) had been reported. This study described the cases during the early phase of the pandemic to provide information for monitoring and response planning in the local context. Methods: We reviewed COVID-19 case records from isolation centres while considering national representation and the WHO sampling guideline for clinical characterization of the COVID-19 pandemic within a country. Socio-demographic, clinical, and exposure data were summarized using median and mean for continuous variables and proportions for categorical variables. We assigned exposure variables to socio-demographics, exposure, and contact data, while the clinical spectrum was assigned outcome variables and their associations were assessed. Results: A total of 2796 case records were reviewed including 2049 (73.3%) male, 852 (30.5%) aged 30-39 years, 2730 (97.6%) Kenyans, 636 (22.7%) transporters, and 743 (26.6%) residents of Nairobi City County. Up to 609 (21.8%) cases had underlying medical conditions, including hypertension (n = 285 (46.8%)), diabetes (n = 211 (34.6%)), and multiple conditions (n = 129 (21.2%)). Out of 1893 (67.7%) cases with likely sources of exposure, 601 (31.8%) were due to international travel. There were 2340 contacts listed for 577 (20.6%) cases, with 632 contacts (27.0%) being traced. The odds of developing COVID-19 symptoms were higher among case who were aged above 60 years (odds ratio (OR) = 1.99, P = 0.007) or had underlying conditions (OR = 2.73, P < 0.001) and lower among transport sector employees (OR = 0.31, P < 0.001). The odds of developing severe COVID-19 disease were higher among cases who had underlying medical conditions (OR = 1.56, P < 0.001) and lower among cases exposed through community gatherings (OR = 0.27, P < 0.001). The odds of survival of cases from COVID-19 disease were higher among transport sector employees (OR = 3.35, P = 0.004); but lower among cases who were aged ≥60 years (OR = 0.58, P = 0.034) and those with underlying conditions (OR = 0.58, P = 0.025). Conclusion: The early phase of the COVID-19 pandemic demonstrated a need to target the elderly and comorbid cases with prevention and control strategies while closely monitoring asymptomatic cases.


Subject(s)
COVID-19 , Aged , Male , Humans , Female , COVID-19/epidemiology , Kenya/epidemiology , Pandemics/prevention & control , SARS-CoV-2 , Comorbidity
3.
Health Secur ; 19(4): 413-423, 2021.
Article in English | MEDLINE | ID: covidwho-1338084

ABSTRACT

Field simulation exercises (FSXs) require substantial time, resources, and organizational experience to plan and implement and are less commonly undertaken than drills or tabletop exercises. Despite this, FSXs provide an opportunity to test the full scope of operational capacities, including coordination across sectors. From June 11 to 14, 2019, the East African Community Secretariat conducted a cross-border FSX at the Namanga One Stop Border Post between the Republic of Kenya and the United Republic of Tanzania. The World Health Organization Department of Health Security Preparedness was the technical lead responsible for developing and coordinating the exercise. The purpose of the FSX was to assess and further enhance multisectoral outbreak preparedness and response in the East Africa Region, using a One Health approach. Participants included staff from the transport, police and customs, public health, animal health, and food inspection sectors. This was the first FSX of this scale, magnitude, and complexity to be conducted in East Africa for the purpose of strengthening emergency preparedness capacities. The FSX provided an opportunity for individual learning and national capacity strengthening in emergency management and response coordination. In this article, we describe lessons learned and propose recommendations relevant to FSX design, management, and organization to inform future field exercises.


Subject(s)
Civil Defense , Disaster Planning , Africa, Eastern , Disease Outbreaks , Humans , Public Health , World Health Organization
4.
COVID ; 2(5):586-598, 2022.
Article in English | MDPI | ID: covidwho-1820194

ABSTRACT

Using classical and genomic epidemiology, we tracked the COVID-19 pandemic in Kenya over 23 months to determine the impact of SARS-CoV-2 variants on its progression. SARS-CoV-2 surveillance and testing data were obtained from the Kenya Ministry of Health, collected daily from 306 health facilities. COVID-19-associated fatality data were also obtained from these health facilities and communities. Whole SARS-CoV-2 genome sequencing were carried out on 1241 specimens. Over the pandemic duration (March 2020–January 2022), Kenya experienced five waves characterized by attack rates (AR) of between 65.4 and 137.6 per 100,000 persons, and intra-wave case fatality ratios (CFR) averaging 3.5%, two-fold higher than the national average COVID-19 associated CFR. The first two waves that occurred before emergence of global variants of concerns (VoC) had lower AR (65.4 and 118.2 per 100,000). Waves 3, 4, and 5 that occurred during the second year were each dominated by multiple introductions each, of Alpha (74.9% genomes), Delta (98.7%), and Omicron (87.8%) VoCs, respectively. During this phase, government-imposed restrictions failed to alleviate pandemic progression, resulting in higher attack rates spread across the country. In conclusion, the emergence of Alpha, Delta, and Omicron variants was a turning point that resulted in widespread and higher SARS-CoV-2 infections across the country.

5.
Int J Infect Dis ; 112: 25-34, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1654527

ABSTRACT

BACKGROUND: The lower than expected COVID-19 morbidity and mortality in Africa has been attributed to multiple factors, including weak surveillance. This study estimated the burden of SARS-CoV-2 infections eight months into the epidemic in Nairobi, Kenya. METHODS: A population-based, cross-sectional survey was conducted using multi-stage random sampling to select households within Nairobi in November 2020. Sera from consenting household members were tested for antibodies to SARS-CoV-2. Seroprevalence was estimated after adjusting for population structure and test performance. Infection fatality ratios (IFRs) were calculated by comparing study estimates with reported cases and deaths. RESULTS: Among 1,164 individuals, the adjusted seroprevalence was 34.7% (95% CI 31.8-37.6). Half of the enrolled households had at least one positive participant. Seropositivity increased in more densely populated areas (spearman's r=0.63; p=0.009). Individuals aged 20-59 years had at least two-fold higher seropositivity than those aged 0-9 years. The IFR was 40 per 100,000 infections, with individuals ≥60 years old having higher IFRs. CONCLUSION: Over one-third of Nairobi residents had been exposed to SARS-CoV-2 by November 2020, indicating extensive transmission. However, the IFR was >10-fold lower than that reported in Europe and the USA, supporting the perceived lower morbidity and mortality in sub-Saharan Africa.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Cross-Sectional Studies , Humans , Kenya/epidemiology , Middle Aged , Seroepidemiologic Studies
6.
MMWR Morb Mortal Wkly Rep ; 69(18): 540-544, 2020 May 08.
Article in English | MEDLINE | ID: covidwho-209644

ABSTRACT

Respiratory pathogens, such as novel influenza A viruses, Middle East respiratory syndrome coronavirus (MERS-CoV), and now, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), are of particular concern because of their high transmissibility and history of global spread (1). Clusters of severe respiratory disease are challenging to investigate, especially in resource-limited settings, and disease etiology often is not well understood. In 2014, endorsed by the Group of Seven (G7),* the Global Health Security Agenda (GHSA) was established to help build country capacity to prevent, detect, and respond to infectious disease threats.† GHSA is a multinational, multisectoral collaboration to support countries towards full implementation of the World Health Organization's International Health Regulations (IHR).§ Initially, 11 technical areas for collaborator participation were identified to meet GHSA goals. CDC developed the Detection and Response to Respiratory Events (DaRRE) strategy in 2014 to enhance country capacity to identify and control respiratory disease outbreaks. DaRRE initiatives support the four of 11 GHSA technical areas that CDC focuses on: surveillance, laboratory capacity, emergency operations, and workforce development.¶ In 2016, Kenya was selected to pilot DaRRE because of its existing respiratory disease surveillance and laboratory platforms and well-developed Field Epidemiology and Laboratory Training Program (FELTP) (2). During 2016-2020, Kenya's DaRRE partners (CDC, the Kenya Ministry of Health [MoH], and Kenya's county public health officials) conceptualized, planned, and implemented key components of DaRRE. Activities were selected based on existing capacity and determined by the Kenya MoH and included 1) expansion of severe acute respiratory illness (SARI) surveillance sites; 2) piloting of community event-based surveillance; 3) expansion of laboratory diagnostic capacity; 4) training of public health practitioners in detection, investigation, and response to respiratory threats; and 5) improvement of response capacity by the national emergency operations center (EOC). Progress on DaRRE activity implementation was assessed throughout the process. This pilot in Kenya demonstrated that DaRRE can support IHR requirements and can capitalize on a country's existing resources by tailoring tools to improve public health preparedness based on countries' needs.


Subject(s)
Disease Outbreaks/prevention & control , Mass Screening/organization & administration , Public Health Surveillance , Respiratory Tract Diseases/diagnosis , Respiratory Tract Diseases/prevention & control , Capacity Building , Humans , Kenya/epidemiology , Pilot Projects , Respiratory Tract Diseases/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL